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Abstract. Consider a set of n mobile entities, called robots, located and operat-
ing on a continuous circle, i.e., all robots are initially in distinct locations on a
circle. The gathering problem asks to design a distributed algorithm that allows
the robots to assemble at a point on the circle. Robots are anonymous, identical,
and homogeneous. Robots operate in a deterministic Look-Compute-Move cy-
cle within the circular path. Robots agree on the clockwise direction. The robot’s
movement is rigid and they have limited visibility π, i.e., each robot can only see
the points of the circle which is at an angular distance strictly less than π from the
robot.
Di Luna et al. [DISC’2020] provided a deterministic gathering algorithm of obliv-
ious and silent robots on a circle in semi-synchronous (SSync) scheduler. Buchin
et al. [IPDPS(W)’2021] showed that, under full visibility, OBLOT robot model
with SSync scheduler is incomparable to FSTA robot (robots are silent but
have finite persistent memory) model with asynchronous (ASync) scheduler. Un-
der limited visibility, this comparison is still unanswered. So, this work extends
the work of Di Luna et al. [DISC’2020] under ASync scheduler for FSTA robot
model.

Keywords: Gathering, Asynchronous, Circle, Limited visibility, Robots, Finite
memory.

1 Introduction

In swarm robotics, robots achieving some tasks with minimum capabilities is the main
focus of interest. In the last two decades, there are huge research interest in robots
working on coordination problems. It is not always easy to use robots with strong ca-
pabilities in real-life applications, as making these robots is not at all cost-effective. If
a swarm of robots with minimum capabilities can do the same task then it is effective
to use swarm robots rather than using robots with many capabilities, as making the cost
of these robots in the swarm is very much cheaper than making robots with many capa-
bilities. Also, it is very easy to design a robot of a swarm because they have minimum
capabilities.
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The gathering is a very vastly studied problem by researchers. This is one of the
fundamental tasks of autonomous robots in the distributed system. Gathering means if
there are n number of robots initially positioned arbitrarily then within finite time all
robots will meet at a point that is not fixed initially. When there are two robots then this
task is called rendezvous. It is not always easy to meet at a point by very weak robots
in the distributed system. So it is challenging to design a distributed algorithm to gather
some robots with very inexpensive and with few capabilities.

In the theoretical approach, robots are assumed to be autonomous, identical, and
homogeneous. They have no global coordinate system. Depending on the capabilities
there are generally four types of robot models. These models are OBLOT , FSTA,
FCOM and LUMI. In each of these models, robots are assumed to be autonomous
(i.e the robots do not have any central control), identical (i.e the robots are physically
indistinguishable), and homogeneous (i.e each robot runs the same algorithm). Further-
more in the OBLOT model, the robots are silent (i.e there is no means of commu-
nication between the robots) and oblivious (i.e the robots do not have any persistent
memory to remember their previous state), in FSTA model the robots are silent but
not oblivious, in FCOM model the robots are oblivious but not silent and in LUMI
model robots are neither silent nor oblivious. The robots after getting activated operate
in a Look-Compute-Move (LCM) cycle. In the Look phase a robot takes input from
its surroundings and then with that input runs the algorithm in Compute phase to get a
destination point as an output. The robot then goes to that destination point by moving
in the Move phase. A scheduler controls the activation of the robots. There are mainly
three types of schedulers considered in the literature. In a synchronous scheduler, time
is divided into global rounds. In (FSync) scheduler each robot is activated in all rounds
and executes the LCM cycle simultaneously. In a semi-synchronous scheduler (SSync)
all robots may not get activated in each round. But the robots that are activated in the
same round execute the LCM cycle simultaneously. Lastly in the asynchronous sched-
uler (ASync), there is no common notion of time, a robot can be activated at any time.
There is no concept of rounds. So there is no assumption regarding synchronization.

In this work, we investigate the gathering of robots on a circle. The robots are on
a perimeter of a circle and they can only move along the perimeter of that circle. Here
the robots have limited visibility. If the robots have full visibility and if they can elect
a unique leader then gathering of robots is not so hard even if in ASync scheduler. But
with limited visibility, as unique leader selection is not easy, so the gathering is also not
trivial. Here we investigate the gathering of robots in an asynchronous scheduler on a
circle with limited visibility with FSTA robots.

2 Related work

In distributed computing gathering of mobile robots has been the focus of intensive in-
vestigation under various computational power and communication varieties. The gath-
ering has been extensively researched in distributed computing. This problem has been
thoroughly studied both in continuous and discrete domains. There are few surveys on
this problem [4,17,8]. In the continuous case, both the gathering and the rendezvous
problems have been investigated in the context of swarms of autonomous mobile robots
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operating in one and two-dimensional spaces, requiring them to meet at or converge
to the same point. Here we mainly focus on the gathering of robots when a robot has
limited visibility. Flochhini [18] in their paper showed that gathering is done by robots
in a plane under limited visibility in ASync scheduler, assuming that all robots agree
on the orientation of both coordinate axes. In [25] authors provided an optimal algo-
rithm for the gathering of robots on a plane under limited visibility. In another work
on [26] authors solved the gathering in Ssync scheduler with one axis agreement. In
[2] authors solved that without chirality and any agreement on local coordinate system
robots gather (similarly converge) under Fsync (SSync) scheduler. After that in paper
[13] they showed that the time complexity depends on the number of swarms.

In the discrete case, the robots are dispersed in a network modeled as a graph and
are required to gather at the same node and terminate. The main difficulty in solving
the problem is symmetry. But when the network nodes are anonymous, the network is
symmetric, the mobile agents are identical, and there is no means of communication,
it is impossible to solve the problem in deterministic means. So the focus is to make
the problems deterministically solvable with minimal assumptions. In the paper [20],
authors showed the gathering of asynchronous oblivious robots in a bipartite graph with
a local vision which means a robot can see its immediate neighbor only. Also in [9] they
provide an algorithm of rendezvous problem in an arbitrary graph. Another interesting
way of researching distributed systems is to investigate any distributed problem with
faulty robots. In [5] authors studied the gathering of robots in a network with byzantine
robots. Also in [1,12] authors provide a gathering algorithm with the crash and byzan-
tine faults. In recent days researchers started to investigate dynamic graphs [7], that is
graphs where the topological changes are not localized, the topology changes continu-
ously and at unpredictable locations, and these changes are an integral part of the nature
of the system. In paper [22] they start the investigation of gathering in dynamic rings.
In [23,10] they studied the gathering of robots in polygon terrain. In [19] they provide
an optimal gathering of robots on a triangular grid. There is huge research work on the
gathering of robots on grid networks [11,3].

In our paper robots are on a continuous circle, and we will solve all robots gather
at a point on the circle. There are some recent works on this model. In [21,15] authors
showed the rendezvous of mobile agents with different speeds in a cycle. Since leader
election ([14]) is an important task for solving many problems in distributed computing.
In [16] authors start the investigation of solving Gather and elect by the set of robots
R deployed in a continuous cycle C, they primarily focus on Elect. But in their model
robots have no visibility i.e they can not see at any distance. After that Di Luna et al.
[24], proves that with limited visibility π gathering of anonymous and oblivious robots
is possible in SSync scheduler but it is impossible to gather all robots when visibility
is π

2 on continuous circle C. In this paper, we proposed an algorithm for gathering with
n robots with finite time under ASync schedulers when visibility is π on a circle in
FSTA robot model.
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3 Our contribution

Under full visibility, gathering on a circle by robots in an asynchronous scheduler is not
so difficult when robots agree on a global sense of handedness. But excluding one point
from visibility makes the gathering problem a bit difficult. Di Luna et al. ([24]) showed
the gathering of oblivious robots on a circle under visibility π in SSync scheduler. In
this paper, we extend this work under the asynchronous scheduler. Here the robots are
anonymous, identical, and silent. However, we only compromise the obliviousness of
the robots to get the liberty of asynchronous scheduler. We assume each robot has finite
persistent memory.

In [6], authors showed that under full visibility, semi-synchronous scheduler with
oblivious, silent robots, abbreviated byOBLOT S is incomparable with an asynchronous
scheduler with silent finite memory robots, abbreviated as FSTAA. For the limited
visibility model, this comparison is still not done. This result shows that bringing finite
memory into the picture does not make the model equally powerful as OBLOT S . Hav-
ing finite memory is not at all a big deal in comparison to maintaining a synchronous
scheduler.

Further, however, we do not consider a general asynchronous scheduler. Precisely,
we assumed that in the LCM cycle of a robot, it takes a nonzero time (non instantaneous)
to finish its look and compute phase together. This assumption is fairly realistic in a
practical scenario.

4 Model and Definitions

4.1 Robot Model

In the problem, we are considering FSTA robot model. The robots are anonymous,
and identical, but not oblivious. Robots have finite persistent memory. Robots can not
communicate with each other. Robots have weak multiplicity detection capability, i.e.,
robots can detect a multiplicity point, but can not determine the number of robots
present at a multiplicity point. All robots are placed on a circle. The robots agree on
a global sense of handedness. Robots operate in Look-Compute-Move cycle. In each
cycle a robot takes a snapshot of the positions of the other robots according to its own
local coordinate system (Look); based on this snapshot, it executes a deterministic al-
gorithm to determine whether to stay put or to move to another point on the circle.
(Compute); and based on the algorithm the robots either remain stationary or makes
a move to an adjacent point (Move). We assume that robots are controlled by a fully
asynchronous adversarial scheduler (ASync). The robots are activated independently
and each robot executes its cycles independently. This implies the amount of time spent
in Look, Compute, Move, and inactive states are finite but unbounded, unpredictable,
and not the same for different robots. We assume that look and compute phase together
in an LCM cycle of a robot is not instantaneous. The robots have no common notion of
time. All robots move at the same speed and their movement is rigid. Here the initial
configuration is asymmetric. Robots have limited visibility which means a robot can
not see the entire circle. Let a and b be two points on circle C, then the angular distance
between a and b is the measure of the angle subtended at the center of C by the shorter
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arc with endpoints a and b. A robot has visibility π, that it can see all the other robots
which are with angular distance less than π.

4.2 Definitions and preliminaries

Definition 1 (Configuration). Let there be a circle given and a finite number of robots
be placed on a circle. We call it a configuration of robots on the circle, or simply a
configuration.

Definition 2 (Rotationally Symmetric Configuration). For a configuration with no
multiplicity point is said to be rotationally symmetric if there is a nontrivial rotation
with respect to the center which leaves the configuration unchanged.

Definition 3 (Antipodal robot). A robot r is said to be an antipodal robot if there exists
a robot r′ on the angular distance π of the robot. In such a case, r and r′ are said to be
antipodal robots to each other.

Note that a robot which is not antipodal is said to be non antipodal robot.

Definition 4. Let r′ and r′′ be two robots in a configuration positioned at distinct po-
sitions. Then cwAngle(r′, r′′) (ccwAngle(r′, r′′)) is the angular distance from r′ to r′′ in
clockwise (counter clockwise) direction.

Definition 5 (Angle sequence). Let r be a robot in a given configuration with no mul-
tiplicity point and let r1, r2, . . . , rn be the other robots on the circle in clockwise order.
Then the angular sequence for robot r is the sequence

(cwAngle(r, r1), cwAngle(r1, r2), cwAngle(r2, r3), . . . , cwAngle(rn, r)).

We denote this sequence as S(r). We further denote the sub sequence

(cwAngle(r, r1), cwAngle(r1, r2), cwAngle(r2, r3), . . . , cwAngle(ri−1, ri))

of S(r) as S(r, ri). Further, we call cwAngle(r, r1) as the leading angle of r.

Note that as the configuration is initially rotationally asymmetric, by results from the
paper [24] we can say that all the robots have distinct angle sequences.

Definition 6 (Lexicographic Ordering). Let ã = (a1, . . . , an) and b̃ = (b1, . . . , bn) be
two finite sequences of reals of same length. Then ã is said to be lexicographically
strictly smaller sequence if a1 < b1 or there exists 1 < k < n such that ai = bi for all
i = 1, 2, . . . , k and ak+1 < bk+1. ã is said to be lexicographically smaller sequence if
either ã = b̃ or ã is lexicographically strictly smaller sequence.

Definition 7 (True leader). In a configuration, a robot with lexicographically smallest
angular sequence is called a true leader.
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If the configuration is rotationally asymmetric and contains no multiplicity point, there
exists exactly one robot which has strictly the smallest lexicographic angle sequence.
Hence there is only one true leader for such a configuration. Since a robot on the circle
cannot see whether its antipodal position is occupied by a robot or not. So a robot can
assume two things: 1) the antipodal position is empty, let’s call this configuration C0(r)
2) the antipodal position is nonempty, let’s call this configuration C1(r). So a robot
r can form two angular sequences. One considering C0(r) configuration and another
considering C1(r). The next two definitions are from the viewpoint of a robot. If the
true leader robot can confirm itself as the true leader, we call it Sure Leader. If the true
leader or some other robot has an ambiguity of being a true leader depending on the
possibility of C0(r) or C1(r) configuration, then we call it Confused Leader. There may
be the following possibilities.

– Possibility-1: C0(r) configuration has rotational symmetry, so C1(r) is the only pos-
sible configuration.

– Possibility-2: C1(r) configuration has rotational symmetry, so C0(r) is the only pos-
sible configuration.

– Possibility-3: Both C0(r) and C1(r) has no rotational symmetry, so both C0(r) and
C1(r) can be possible configurations.

Definition 8 (Sure leader). A robot r in a rotationally asymmetric configuration with
no multiplicity point is called Sure Leader if r is the true leader in any possible config-
uration.

Note that, the Sure leader is definitely the true leader of the configuration. Hence at
any time if the configuration is asymmetric and contains no multiplicity point, there is
at most one Sure leader.

Definition 9 (Confused leader). A robot r in a rotationally asymmetric configuration
with no multiplicity point is called a Confused Leader if both C0(r) and C1(r) are pos-
sible configurations and r is a true leader in one configuration but not in another.

Definition 10 (Follower robot). A robot in an asymmetric configuration with no mul-
tiplicity point is said to be a follower robot if it is neither a sure leader nor a confused
leader.

Definition 11 (Expected leader). A robot in an asymmetric configuration with no mul-
tiplicity point is said to be an expected leader if it is not a follower robot. That is, an
expected leader is either a sure leader or a confused leader.

Note that the above definitions are set in such a way that the sure leader (or, a confused
leader or, a follower robot) can recognize itself as a sure leader (or, a confused leader
or, a follower robot).

Definition 12. For two robots r and r′ situated at different positions on the circle such
that cwAngle(r, r′) = θ we define [r, r′] as the set of points x on the circle such that
0 ≤ cwAngle(r, x) ≤ θ and (r, r′) as the set of points x on the circle such that 0 <
cwAngle(r, x) < θ.
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Definition 13. Let r be a robot in a configuration, then another robot r1 is said to be
situated at the left of r if cwAngle(r, r1) > π and said to be at right if cwAngle(r, r1) < π.

Note that, the true leader of the configuration can become a confused leader and a robot
other than the true leader can also become a confused Leader. The next results lead us
to find the maximum possible number of expected leaders.

Proposition 1. Let (a1, . . . , ak) be the angular sequence of the true leader, say r0, in a
rotationally asymmetric configuration with no multiplicity point. Then there cannot be
another robot r′ with the following properties.

1. r′ is at left side to r0,
2. S(r′, r0) = (a1, a2, . . . , ai),
3. First i angles of S(r0) respectively are a1, a2, . . . , ai−1 and ai.

Proof. We prove this result by contradiction. If possible let there be such a robot r′.
Then note that S(r0) is ã = (a1, . . . , ai, ai+1, . . . , ak−i, a1, . . . , ai) and S(r′) is ã1 =

(a1, . . . , ai, a1, . . . , ai, ai+1, . . . , ak−i). Since r0 has the strictly smallest angular sequence,
so a1 is the smallest angle in the configuration and also ai+1 ≤ a1, which leads to ai+1 =

a1. Next, we show that a2 = ai+2. Since the ã is strictly the smallest angular sequence so
ai+2 ≤ a2. If ai+2 < a2, then the angular sequence (ai+1, . . . , ak−i, a1, . . . , ai, a1, . . . , ai) is
smaller than ã, which is a contradiction. Hence a2 = ai+2. Therefore by a similar argu-
ment, we can show that ai+ j = a j for j = 3, . . . , i. Now if 2i = k then we see that ã = ã1,
which contradicts the fact that the configuration is rotationally asymmetric. Otherwise,
proceeding similarly we can show that a2i+ j = a j, for j = 1, 2, . . . , i. Repeating the same
argument we can show that api+ j = a j, for j = 1, 2, . . . , i. Since there are finitely many
angles, so after finite number of steps we must end up having that k = ti where t ≥ 2
and ã = ã1 = (a1, . . . , ai, a1, . . . , ai, . . . , a1, . . . , ai), which is again a contradiction.

Next, we state a simple observation in the following Proposition 2.

Proposition 2. Suppose there is a rotationally asymmetric configuration with no multi-
plicity point with the true leader, r0 (say), then on including a robot, say r, on the circle
at an empty point without bringing any rotational symmetry, the true leader of the new
configuration must be in [r0, r].

For a confused leader r, there may be two possibilities. The first one is when r is a
true leader in C0(r) configuration but not in C1(r). The second one is when r is a true
leader in C1(r) configuration but not in C0(r). We show that the second possibility can
not occur. We formally state the result in the following Proposition.

Proposition 3. If a robot r is a confused leader in asymmetric configuration with no
multiplicity point, r is the true leader in C0(r) configuration but r is not the true leader
in C1(r) configuration.

From Proposition 3 one can observe that if the true leader of an asymmetric configura-
tion with no multiplicity point is a confused leader then its antipodal position must be
empty. And also if a robot, which is not the true leader of the configuration, becomes a
confused leader then its antipodal position must be non-empty. We record these obser-
vations in the following Corollaries.
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Corollary 1. In a rotationally asymmetric configuration with no multiplicity point if the
true leader of the configuration is a confused leader then its antipodal position must be
empty.

Corollary 2. In a rotationally asymmetric configuration with no multiplicity point if a
robot other than the true leader becomes a confused leader then its antipodal position
must be non-empty.

Proposition 4. Let C be a rotationally asymmetric configuration with no multiplicity
point and L be the true leader of the configuration, then another expected leader r of C
must satisfy cwAngle(L, r) ≥ π.

Proof. If possible let there be another expected leader r such that cwAngle(L, r) < π.
Since r is not the leader of the configuration, so r must be a confused leader. Hence
from Proposition 3 we have that r is true leader in C0(r) configuration and L is the true
leader of C1(r) configuration. This contradicts the Proposition 2.

Proposition 5. For any given rotationally asymmetric configuration with no multiplic-
ity point, there can be at most one confused leader other than the true leader.

Proof. Let C be the given configuration. If possible let r1 and r2 be two confused leaders
other than the true leader, say L. From Proposition 4 First we have that cwAngle(L, ri) ≥
π, for i = 1, 2. Without loss of generality we assume cwAngle(L, r1) < cwAngle(L, r2).
Since ris are confused leaders so from Proposition 3 their antipodal position is non-
empty. Let for each i, r′i be the antipodal robot of ri. There are two exhaustive cases.
First one is cwAngle(L, r1) = π and second one is cwAngle(L, r1) > π.

Case-I: cwAngle(L, r1) = π
Case-IA: In this case let the first angle of the angle sequences of r1 and L be differ-

ent. Let the first angle in S(L) and S(r1) are θ and θ1 respectively, then θ < θ1. Since r′2
cannot be the clockwise neighbor of L, so r2 can see the leading angle of L. Therefore
in order to become a confused leader, the leading angle of r2 has to be θ. Now there may
be two cases. Firstly either the clockwise neighbor of r2 is L or not. If the clockwise
neighbor of r2 is L then from Proposition 2 L does not remain the true leader of the
configuration, which is a contradiction. Secondly, if the clockwise neighbor of r2 is not
L then r1 can see the leading angle of r2, that is θ which is smaller than the leading
angle of r1. This gives C r L cannot have r1 as a true leader. This contradicts the fact
that r1 is a confused leader.

Case-IB: Let the first t angles of S(L) and S(r1) are same and (t + 1)th angles are
different. Let first t clockwise neighbors of L in clockwise order are x1, x2, . . . , xt and
first t clockwise neighbors of r1 in clockwise order are x′1, x

′
2, . . . , x

′
t . First, we show that

r2 is none of x′is. If possible let r2 = x′i where i < t. Then r2 can see the first i− 1 angles
of S(L) and S(r1). Since ith clockwise neighbor of r2 is at the left of r′2, r2 can see its
first i angles of S(r2) in original configuration. Now first we observe that the first i − 1
angles of r2 and L are the same. If not then either r2 would not be a confused leader or
L would not be leader of the configuration. Now we see that ith angle of S(L) and S(r2)
is also same. If possible let ith angle of S(L) and S(r2) are θi and αi respectively, and
αi > θi (Note that the case αi < θi gets excluded from the fact that L is the true leader of
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the configuration). Since ith angle of r1 is also θi which is visible by r2, so then r2 would
not be confused leader. Hence first i angles of S(r1) and S(r2) are same. Therefore from
Proposition 2, the r2 cannot be a confused leader. Hence for each i < t, r2 , x′i . Now
it is easy to observe that r2 , xt, because otherwise, the leading angle of r2 is strictly
greater than the leading angle of L. which makes that r2 is not a confused leader.

Hence for each 1 ≤ i ≤ t, r2 , x′i . Thus note that r2 can see the first t + 1 angles of
S(L) and in order to remain a confused leader first t + 1 angles of S(r2) should match
with it. Now there are two cases, either (t + 1)th clockwise neighbor of r2 is L or not. If
not then r1 can see the first t + 1 angles of S(r2). And t + 1th angle of S(r2) is smaller
than same of S(r1). Therefore r1 would not be a confused leader. In other case if (t+1)th

clockwise neighbor of r2 is L then from Proposition 2, L does not remain leader of the
configuration. Hence for case-I, we end up having a contradiction if there is more than
one confused leader other than a true leader.

Case-II: cwAngle(L, r1) > π
Case-IIA: In this case let the first angle of the angle sequences of r1 and L be dif-

ferent. Let the first angle in S(L) and S(r1) are θ and θ1 respectively, then θ < θ1. Since
in this case r′2 cannot be the clockwise neighbor of L, so r2 can see the leading angle of
L. Therefore in order to become a confused leader, the leading angle of r2 has to be θ.
Now r1 can see the leading angle of r2, that is θ which is smaller than the leading angle
of r1. This gives C r r′1 cannot have r1 as true leader. This contradicts the fact that r1 is
confused leader.

Case-IIB: Let the first t angles of S(L) and S(r1) are same and (t + 1)th angles are
different. Let first t clockwise neighbors of L in clockwise order are x1, x2, . . . , xt and t
clockwise neighbors of r1 in clockwise order are x′1, x

′
2, . . . , x

′
t . Since r1 is not antipodal

of L, so r′2 cannot be the clockwise first neighbor of L. Borrowing the argument from
Case-I we can conclude that r2 is none of x′is. In other cases, r2 can see the first t + 1
angles of S(L) and in order to be a confused leader first t + 1 angles of S(r2) should
coincide with the same with S(L). Now we see that r1 can see the first t + 1 angles of
S(r2). If not then, since r′1 is at right to L, so L will be at most tth neighbor of r1. This
implies L is not the true leader of the configuration from Proposition 2. So r1 can see
the first t + 1 angles of S(r2). Since (t + 1)th angle of S(r2) is smaller than the same
of S(r1) then r1 does not remain a confused leader of the configuration. Which is a
contradiction.

Hence it is proved that there cannot be more than one confused leader other than the
true leader of the configuration.

Let C be a rotationally asymmetric configuration with no multiplicity point. Then
C will have a true leader and from above Proposition 2 there can be at most one more
confused leader. Hence we can have the following four exhaustive cases for C.

1. C has exactly one expected leader and that is a sure leader.
2. C has exactly one expected leader and that is a confused leader.
3. C has exactly two expected leaders and both are confused leaders.
4. C has exactly two expected leaders. One of them is a sure leader and another one is

a confused leader.

The Fig. 1 and Fig. 2 give the existence of all four above cases. For the third case, we
observe two properties in the following Propositions.
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Fig. 1: In the left figure only one sure leader (SL) and in right figure two confused leader
(CL) in the configuration.

Fig. 2: In left figure only one confused leader (CL) and in the right figure one sure leader
(SL) and one confused leader (CL).

Proposition 6. If for a rotationally asymmetric configuration with no multiplicity point
if there are two confused leaders then they can not be antipodal of each other.

Proof. Let p and q be two confused leaders of a rotational asymmetric configuration
with no multiplicity point. Now one of p and q must be the true leader of the config-
uration. Without loss of generality let p be the leader of the configuration. Then from
the Corollary 1 antipodal position of p must be empty. Hence another confused leader
q cannot be at the antipodal position of p.

Proposition 7. If for a rotationally asymmetric configuration with no multiplicity point
if there are two confused leaders then their clockwise neighbors cannot be antipodal to
each other.

Proof. If possible let the clockwise neighbors of two confused leaders be antipodal
to each other. Let L be the true leader of the configuration and r be another confused
leader. Then from Proposition 4 and Proposition 6 we have cwAngle(L, r) > π. Then
the leading angle of L becomes strictly greater than the leading angle of r (Figure 3).
This contradicts the fact that L is the true leader of the configuration.
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Fig. 3: An image related to Proposition 7

5 Proposed Algorithm

In this section, we provide the proposed algorithm that works for asynchronous robots
with finite memory. The initial configuration is rotationally asymmetric and the robots
are at distinct points on the circle. Each robot has π visibility, which means, a robot
cannot see its antipodal position. Each robot can move at a uniform speed on the arc of
the circle. The moving speed of each circle is same. The proposed algorithm is provided
in the Algorithm 1.

Discussion of the Algorithm: Robots are initially dispersed on distinct points of a circle
and the initial configuration is rotationally asymmetric. Robots have limited visibility.
A robot can not see its antipodal position. As the initial configuration is rotationally
asymmetric so each robot has distinct angle sequences. On getting activated a robot r
first checks whether it is the only robot in its visibility. If yes, then it moves π/2 angle
clockwise. Otherwise, it looks for a multiplicity point. If there is any multiplicity point
in the visible configuration then there are two possibilities. Possibility number one, r
itself is located at a multiplicity point, and possibility number two, is not located at a
multiplicity point. If r is not located at a multiplicity point, and one of the multiplicity
points is a clockwise or anticlockwise neighbor of r, then r moves to the closer mul-
tiplicity point. Suppose r is located on a multiplicity point. For such a case, if there
is another multiplicity point other than where r is located, and that multiplicity point
is at a clockwise distance less than π then r moves to that multiplicity point. Next, if
there is no multiplicity point in the visible configuration, then it decides whether it is an
expected leader or a follower robot. If r is a follower robot then, it does nothing. If r is
a sure leader and its state is off, then it moves to its first clockwise neighbor. If r is a
confused leader then it checks its state. If its state is terminate then it does nothing. If
its state is off then there are several cases. Case-I: If the first clockwise neighbor of r
is safe, then r moves to its neighbor’s position. Case-II: If the first clockwise neighbor
of r is not safe and C0(r) configuration has another confused leader other than r, then r
does nothing. Case-III: If neither of Case-I or Case-II holds then r changes its state to
moveHalf and moves θ/2 angular distance clockwise.

Next, suppose on getting activated, r is at the state moveHalf. If the first clockwise
neighbor of r, say r′, is not antipodal then r changes its state to terminate and does
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not move. Otherwise, let s be the robot at the antipodal position of r′ and the leading
angle of r is θ/2. Then if there is a robot visible to r in the arc [s − θ

2 R, s + θ
2 R) then r

changes its state to terminate and move θ/2 angular distance counterclockwise. If r′ is
antipodal and there is no robot visible to r in the arc [s − θ

2 R, s + θ
2 R), then r changes

the state to moveMore and moves θ/4 angular distance clockwise.
Next, suppose on getting activated, r is at the state moveMore. If the first clockwise

neighbor of r, say r′, is not antipodal then r changes its state to terminate and does
not move. Otherwise, let s be the robot at the antipodal position of r′ and the leading
angle of r is θ/4. Then if there is a robot visible to r in the arc [s − θ

4 R, s + θ
4 R) then r

changes its state to terminate and move 3θ/4 angular distance counterclockwise. If r′ is
antipodal and there is no robot visible to r in the arc [s − 3θ

4 R, s + θ
4 R), then r changes

the state to off and moves at the position of its first clockwise neighbor.
Note that, according to the definition of sure leader (confused leader, follower robot),

a robot can identify itself whether it is a sure leader (confused leader, follower robot) or
not.

Before formally presenting the proposed algorithm, we give the definition of a safe
clockwise neighbor.

Definition 14 (Safe neighbor). Suppose r is a confused expected leader and s is the
first clockwise neighbor of r. The robot s is said to be a safe neighbor of r if the first
clockwise neighbor of the true leader of C1(r) configuration is not antipodal to s.

Next, we formally present the algorithm given in Algorithm 1.
Next, we categorise an initial configuration, rotationally asymmetric configuration

with no multiplicity points in the following:

– Configuration-A: Only the expected leader is the true leader of the configuration. If
the expected leader is a confused leader then its clockwise first neighbor is safe.

– Configuration-B: There are two expected leaders in the configuration.
• Configuration-BI: when the confused leader which is not the true leader finds

its clockwise first neighbor safe.
• Configuration-BII: when the confused leader which is not the true leader finds

its clockwise first neighbor unsafe.
– Configuration-C: One expected leader which is a confused leader sees that its

clockwise first neighbor is not safe.

6 Correctness

We will prove that if all robots are initially placed on a rotationally asymmetric configu-
ration with no multiplicity point then on finite time execution of Algorithm 1 gathering
of all robots eventually will occur at a point and no longer move in the asynchronous
scheduler. First, we show that from the initial configuration after finite execution of Al-
gorithm 1 at least one and at most two multiplicity points will be created by robots. Then
from a configuration with one or two multiplicity point the robots eventually gather at
one of the multiplicity points and do not move further.
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Algorithm 1: Gathering algorithm for visibility π
1 The algorithm is executed by a generic robot r with initial state off;

Input: The set of points occupied by robots visible to r
Output: Destination point for robot r

2 if there is a robot visible then
3 if there is no multiplicity point then
4 if if the robot r has state off then
5 if the robot r is the sure leader then
6 move to it’s clockwise neighbour’s position;
7 else if the robot r is a confused leader then
8 if the clockwise first neighbor of r is safe then
9 move to the position of its clockwise first neighbor

10 else if C0(r) configuration does not have another confused leader other
than r then

11 let leading angle of r be θ;
12 change the state to moveHalf and move θ

2 angular distance
clockwise;

13 else if the robot r has the state moveHalf then
14 let the leading angle of r be θ

2 ;
15 let s be the antipodal position of r;
16 if clockwise neighbor of r is non antipodal then
17 change the state to terminate;
18 else if there is no robot in the arc [s − θ

2 R, s + θ
2 R) then

19 change the state to moveMore;
20 move θ

4 angular distance clockwise;
21 else if there is a robot in the arc [s − θ

2 R, s + θ
2 R) then

22 change the state to terminate;
23 move θ

2 angular distance counterclockwise;

24 else if the robot r has the state moveMore then
25 let the leading angle of r be θ

4 ;
26 let s be the antipodal position of r;
27 if clockwise neighbor of r is non antipodal then
28 change the state to terminate;
29 else if there is no robot in the arc [s − 3θ

4 R, s + θ
4 R) then

30 change the state to off;
31 move to the position of its clockwise first neighbor;
32 else if there is a robot in the arc [s − 3θ

4 R, s + θ
4 R) then

33 change the state to terminate;
34 move 3θ

4 angular distance counterclockwise;

35 else if there is a multiplicity point but the robot r is not at any multiplicity point then
36 if its clockwise or counter-clockwise neighbor is a multiplicity point then
37 Move to the closer multiplicity point

38 else if Only visible position is a multiplicity point then
39 if clockwise angular distance from the multiplicity point is < π/2 then
40 Move to the multiplicity point

41 else
42 Move π

2 distance in clockwise direction
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Lemma 1. If the initial configuration is type configuration-A, then after finite time ex-
ecution of Algorithm 1 at least one multiplicity point will form.

Lemma 2. If the initial configuration is type configuration-B, then after finite time ex-
ecution of Algorithm 1 at least one multiplicity point will form.

Lemma 3. If the initial configuration is type configuration-C, then after finite time ex-
ecution of Algorithm 1 at least one multiplicity point will form.

Fig. 4: Movement of one confused leader (r) in type configuration-C where initial color
of r is off, blue color indicates moveHalf and red color indicates moveMore

Theorem 1. LetC be a rotationally asymmetric configuration with no multiplicity point,
then after finite execution of Algorithm 1 by the robots on C at least one multiplicity
point will be created.

Proof. Let C be a rotationally asymmetric configuration with no multiplicity point.
Then there can be three exhaustive possible configurations, Configuration-A, Configuration-
B and Configuration-C.

From lemma 1, lemma 2, and lemma 3 we can say that in any type of configuration
at least one multiplicity point will form.

Lemma 4. From any rotationally asymmetric configuration with no multiplicity point,
by finite time execution of Algorithm 1 the robots can form at most two multiplicity
points and then all robots gather at a point on the circle.

Hence, we can conclude the following theorem.

Theorem 2. There exists a gathering algorithm that gathers any set of robots with
finite memory and π visibility from any initial rotationally asymmetric configuration
under asynchronous scheduler.
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7 Conclusion

In this paper, we present a gathering algorithm of robots with finite memory on a cir-
cle under an asynchronous scheduler with visibility π. Robots are initially at distinct
positions on the circle forming any rotationally asymmetric configuration. We assume
that each robot has finite persistent memory. For future studies on this problem, it will
be interesting, if one can give a gathering algorithm when robots are oblivious or the
visibility is less than π.
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